MST Algorithm¶
Minimum Spanning Tree network construction.
Overview¶
The MST (Minimum Spanning Tree) algorithm creates the simplest tree connecting all haplotypes with minimum total distance.
Characteristics: - Always produces a tree (no cycles) - Deterministic result - Fast computation - Best for initial exploration
Classes¶
pypopart.algorithms.mst ¶
Minimum Spanning Tree (MST) algorithm for haplotype network construction.
This module implements both Prim's and Kruskal's algorithms for constructing minimum spanning trees from genetic sequence data. The MST forms the foundation for more complex network algorithms including MSN and median-joining networks.
References
.. [1] Excoffier, L. & Smouse, P. E. (1994). Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics, 136(1), 343-359.
MinimumSpanningTree ¶
Bases: NetworkAlgorithm
Construct a Minimum Spanning Tree from haplotype data.
A minimum spanning tree (MST) connects all haplotypes with the minimum total genetic distance. This is the simplest haplotype network algorithm and forms the basis for more complex methods like MSN (Minimum Spanning Network).
The MST is guaranteed to be a tree (no cycles) and provides the most parsimonious representation of relationships between haplotypes.
Supports both Prim's and Kruskal's algorithms for MST construction:
-
Prim's algorithm: Grows the tree from a single starting node, always adding the minimum-weight edge that connects a new node. Time complexity: O(E log V) with binary heap.
-
Kruskal's algorithm: Sorts all edges and adds them in order of increasing weight, skipping edges that would create cycles. Time complexity: O(E log E) with union-find.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
distance_method
|
str
|
str, default='hamming'. Method for calculating pairwise distances between sequences. |
'hamming'
|
Options
|
'hamming', 'jukes_cantor', 'kimura_2p', 'tamura_nei'. |
required | |
algorithm
|
str
|
str, default='prim'. MST construction algorithm to use: 'prim' or 'kruskal'. |
'prim'
|
**kwargs
|
dict. Additional parameters passed to base NetworkAlgorithm. |
{}
|
Attributes:
| Name | Type | Description |
|---|---|---|
algorithm |
str
|
The selected MST algorithm |
_distance_matrix |
DistanceMatrix
|
Cached distance matrix from last construction |
Examples:
>>> from pypopart.algorithms import MinimumSpanningTree
>>> from pypopart.io import load_alignment
>>>
>>> # Load alignment
>>> alignment = load_alignment('sequences.fasta')
>>>
>>> # Construct MST using Prim's algorithm
>>> mst = MinimumSpanningTree(algorithm='prim')
>>> network = mst.build_network(alignment)
>>>
>>> # Construct using Kruskal's algorithm
>>> mst = MinimumSpanningTree(algorithm='kruskal')
>>> network = mst.build_network(alignment)
Notes
For most applications, Prim's algorithm is preferred as it's typically faster and uses less memory. Kruskal's algorithm can be advantageous when the graph is sparse or when edges are already sorted.
See Also
MinimumSpanningNetwork : Extension of MST allowing alternative connections TCS : Statistical parsimony network construction
Source code in src/pypopart/algorithms/mst.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | |
__init__ ¶
Initialize MST algorithm.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
distance_method
|
str
|
Method for calculating distances. |
'hamming'
|
algorithm
|
str
|
MST algorithm to use ('prim' or 'kruskal'). |
'prim'
|
**kwargs
|
Additional parameters. |
{}
|
Source code in src/pypopart/algorithms/mst.py
construct_network ¶
construct_network(
alignment: Alignment,
distance_matrix: Optional[DistanceMatrix] = None,
) -> HaplotypeNetwork
Construct MST from sequence alignment.
Returns:
| Type | Description |
|---|---|
Haplotype network representing the MST.
|
|